Biography Of World's 1st Programmer Ada Lovelace 💚

That the brain of mine is something more than merely mortal: As time will show.
~Ada Lovelace
Introduction Of Ada Lovelace:
Augusta Ada King, Countess of Lovelace (née Byron; 10 December 1815 – 27 November 1852) was an English mathematician and writer, chiefly known for her work on Charles Babbage's proposed mechanical general-purpose computer, the Analytical Engine. She was the first to recognise that the machine had applications beyond pure calculation, and to have published the first algorithm intended to be carried out by such a machine. As a result, she is often regarded as the first computer programmer.
Born:
The Hon. Augusta Ada Byron 10 December 1815 London, England
Died:
27 November 1852 (aged 36) Marylebone, London, England
Resting place:
Church of St. Mary Magdalene, Hucknall, Nottingham, England
Known for:
Mathematics, computing
Spouse(s):
William King-Noel, 1st Earl of Lovelace (m. 1835)
Children:
Byron King-Noel, Viscount Ockham and 12th Baron Wentworth Anne Blunt, 15th Baroness Wentworth Ralph King-Milbanke, 2nd Earl of Lovelace
Ada Byron was the only child of poet Lord Byron and mathematician Lady Byron.All of Byron's other children were born out of wedlock to other women.Byron separated from his wife a month after Ada was born and left England forever. Four months later, he commemorated the parting in a poem that begins, "Is thy face like thy mother's my fair child! ADA! sole daughter of my house and heart?".He died in Greece when Ada was eight years old. Her mother remained bitter and promoted Ada's interest in mathematics and logic in an effort to prevent her from developing her father's perceived insanity. Despite this, Ada remained interested in him, naming her two sons Byron and Gordon. Upon her death, she was buried next to him at her request. Although often ill in her childhood, Ada pursued her studies assiduously. She married William King in 1835. King was made Earl of Lovelace in 1838, Ada thereby becoming Countess of Lovelace.
Her educational and social exploits brought her into contact with scientists such as Andrew Crosse, Charles Babbage, Sir David Brewster, Charles Wheatstone, Michael Faraday and the author Charles Dickens, contacts which she used to further her education. Ada described her approach as "poetical science" and herself as an "Analyst (& Metaphysician)".
When she was a teenager (18), her mathematical talents led her to a long working relationship and friendship with fellow British mathematician Charles Babbage, who is known as "the father of computers". She was in particular interested in Babbage's work on the Analytical Engine. Lovelace first met him in June 1833, through their mutual friend, and her private tutor, Mary Somerville.
Between 1842 and 1843, Ada translated an article by Italian military engineer Luigi Menabrea about the Analytical Engine, supplementing it with an elaborate set of notes, simply called "Notes". Lovelace's notes are important in the early history of computers, containing what many consider to be the first computer program—that is, an algorithm designed to be carried out by a machine. Other historians reject this perspective and point out that Babbage's personal notes from the years 1836/1837 contain the first programs for the engine. She also developed a vision of the capability of computers to go beyond mere calculating or number-crunching, while many others, including Babbage himself, focused only on those capabilities. Her mindset of "poetical science" led her to ask questions about the Analytical Engine (as shown in her notes) examining how individuals and society relate to technology as a collaborative tool.
Commemoration:
The computer language Ada, created on behalf of the United States Department of Defense, was named after Lovelace.The reference manual for the language was approved on 10 December 1980 and the Department of Defense Military Standard for the language, MIL-STD-1815, was given the number of the year of her birth.
In 1981, the Association for Women in Computing inaugurated its Ada Lovelace Award.Since 1998, the British Computer Society (BCS) has awarded the Lovelace Medal,and in 2008 initiated an annual competition for women students.[112] BCSWomen sponsors the Lovelace Colloquium, an annual conference for women undergraduates. Ada College is a further-education college in Tottenham Hale, London, focused on digital skills.
Ada Lovelace Day is an annual event celebrated on the second Tuesday of October,which began in 2009. Its goal is to "... raise the profile of women in science, technology, engineering, and maths," and to "create new role models for girls and women" in these fields. Events have included Wikipedia edit-a-thons with the aim of improving the representation of women on Wikipedia in terms of articles and editors to reduce unintended gender bias on Wikipedia. The Ada Initiative was a non-profit organisation dedicated to increasing the involvement of women in the free culture and open source movements.
The Engineering in Computer Science and Telecommunications College building in Zaragoza University is called the Ada Byron Building. The computer centre in the village of Porlock, near where Lovelace lived, is named after her. Ada Lovelace House is a council-owned building in Kirkby-in-Ashfield, Nottinghamshire, near where Lovelace spent her infancy.
In 2012, a Google Doodle and blog post honoured her on her birthday.
In 2013, Ada Developers Academy was founded and named after her. The mission of Ada Developers Academy is to diversify tech by providing women and gender diverse people the skills, experience, and community support to become professional software developers to change the face of tech.
On 17 September 2013, an episode of Great Lives about Ada Lovelace aired.
As of November 2015, all new British passports have included an illustration of Lovelace and Babbage.
In 2017, a Google Doodle honoured her with other women on International Women's Day.
On 2 February 2018, Satellogic, a high-resolution Earth observation imaging and analytics company, launched a ÑuSat type micro-satellite named in honour of Ada Lovelace.
In March 2018, The New York Times published a belated obituary for Ada Lovelace.
On 27 July 2018, Senator Ron Wyden submitted, in the United States Senate, the designation of 9 October 2018 as National Ada Lovelace Day: "To honor the life and contributions of Ada Lovelace as a leading woman in science and mathematics". The resolution (S.Res.592)was considered, and agreed to without amendment and with a preamble by unanimous consent.
In November 2020 it was announced that Trinity College Dublin whose library had previously held forty busts, all of them of men, was commissioning four new busts of women, one of whom was to be Lovelace.
Work:
Throughout her life, Lovelace was strongly interested in scientific developments and fads of the day, including phrenology and mesmerism. After her work with Babbage, Lovelace continued to work on other projects. In 1844, she commented to a friend Woronzow Greig about her desire to create a mathematical model for how the brain gives rise to thoughts and nerves to feelings ("a calculus of the nervous system").She never achieved this, however. In part, her interest in the brain came from a long-running pre-occupation, inherited from her mother, about her "potential" madness. As part of her research into this project, she visited the electrical engineer Andrew Crosse in 1844 to learn how to carry out electrical experiments. In the same year, she wrote a review of a paper by Baron Karl von Reichenbach, Researches on Magnetism, but this was not published and does not appear to have progressed past the first draft. In 1851, the year before her cancer struck, she wrote to her mother mentioning "certain productions" she was working on regarding the relation of maths and music.
through their mutual friend Mary Somerville. Later that month, Babbage invited Lovelace to see the prototype for his difference engine.[58] She became fascinated with the machine and used her relationship with Somerville to visit Babbage as often as she could. Babbage was impressed by Lovelace's intellect and analytic skills. He called her "The Enchantress of Number." In 1843, he wrote to her:
Forget this world and all its troubles and if possible its multitudinous Charlatans—every thing in short but the Enchantress of Number.
The notes are around three times longer than the article itself and include (in Note G), in complete detail, a method for calculating a sequence of Bernoulli numbers using the Analytical Engine, which might have run correctly had it ever been built(only Babbage's Difference Engine has been built, completed in London in 2002). Based on this work, Lovelace is now considered by many to be the first computer programmer and her method has been called the world's first computer program. Others dispute this because some of Charles Babbage's earlier writings could be considered computer programs.
Note G also contains Lovelace's dismissal of artificial intelligence. She wrote that "The Analytical Engine has no pretensions whatever to originate anything. It can do whatever we know how to order it to perform. It can follow analysis; but it has no power of anticipating any analytical relations or truths." This objection has been the subject of much debate and rebuttal, for example by Alan Turing in his paper "Computing Machinery and Intelligence".Most modern computer scientists argue that this view is outdated and that computer software can develop in ways that cannot necessarily be anticipated by programmers.
Lovelace and Babbage had a minor falling out when the papers were published, when he tried to leave his own statement (criticising the government's treatment of his Engine) as an unsigned preface, which could have been mistakenly interpreted as a joint declaration. When Taylor's Scientific Memoirs ruled that the statement should be signed, Babbage wrote to Lovelace asking her to withdraw the paper. This was the first that she knew he was leaving it unsigned, and she wrote back refusing to withdraw the paper. The historian Benjamin Woolley theorised that "His actions suggested he had so enthusiastically sought Ada's involvement, and so happily indulged her ... because of her 'celebrated name'."Their friendship recovered, and they continued to correspond. On 12 August 1851, when she was dying of cancer, Lovelace wrote to him asking him to be her executor, though this letter did not give him the necessary legal authority. Part of the terrace at Worthy Manor was known as Philosopher's Walk, as it was there that Lovelace and Babbage were reputed to have walked while discussing mathematical principles.
First computer program:
In 1840, Babbage was invited to give a seminar at the University of Turin about his Analytical Engine. Luigi Menabrea, a young Italian engineer and the future Prime Minister of Italy, transcribed Babbage's lecture into French, and this transcript was subsequently published in the Bibliothèque universelle de Genève in October 1842. Babbage's friend Charles Wheatstone commissioned Ada Lovelace to translate Menabrea's paper into English. She then augmented the paper with notes, which were added to the translation. Ada Lovelace spent the better part of a year doing this, assisted with input from Babbage. These notes, which are more extensive than Menabrea's paper, were then published in the September 1843 edition of Taylor's Scientific Memoirs under the initialism AAL.
Ada Lovelace's notes were labelled alphabetically from A to G. In note G, she describes an algorithm for the Analytical Engine to compute Bernoulli numbers. It is considered to be the first published algorithm ever specifically tailored for implementation on a computer, and Ada Lovelace has often been cited as the first computer programmer for this reason. The engine was never completed so her program was never tested.
In 1953, more than a century after her death, Ada Lovelace's notes on Babbage's Analytical Engine were republished as an appendix to B. V. Bowden's Faster than Thought: A Symposium on Digital Computing Machines.The engine has now been recognised as an early model for a computer and her notes as a description of a computer and software.
The Analytical Engine] might act upon other things besides number, were objects found whose mutual fundamental relations could be expressed by those of the abstract science of operations, and which should be also susceptible of adaptations to the action of the operating notation and mechanism of the engine...Supposing, for instance, that the fundamental relations of pitched sounds in the science of harmony and of musical composition were susceptible of such expression and adaptations, the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.
According to the historian of computing and Babbage specialist Doron Swade:
Ada saw something that Babbage in some sense failed to see. In Babbage's world his engines were bound by number...What Lovelace saw...was that number could represent entities other than quantity. So once you had a machine for manipulating numbers, if those numbers represented other things, letters, musical notes, then the machine could manipulate symbols of which number was one instance, according to rules. It is this fundamental transition from a machine which is a number cruncher to a machine for manipulating symbols according to rules that is the fundamental transition from calculation to computation—to general-purpose computation—and looking back from the present high ground of modern computing, if we are looking and sifting history for that transition, then that transition was made explicitly by Ada in that 1843 paper.
Controversy over contribution :
Though Lovelace is often referred to as the first computer programmer, some biographers, computer scientists and historians of computing claim otherwise.
Allan G. Bromley, in the 1990 article Difference and Analytical Engines:
All but one of the programs cited in her notes had been prepared by Babbage from three to seven years earlier. The exception was prepared by Babbage for her, although she did detect a "bug" in it. Not only is there no evidence that Ada ever prepared a program for the Analytical Engine, but her correspondence with Babbage shows that she did not have the knowledge to do so.
Eugene Eric Kim and Betty Alexandra Toole consider it "incorrect" to regard Lovelace as the first computer programmer, as Babbage wrote the initial programs for his Analytical Engine, although the majority were never published. Bromley notes several dozen sample programs prepared by Babbage between 1837 and 1840, all substantially predating Lovelace's notes. Dorothy K. Stein regards Lovelace's notes as "more a reflection of the mathematical uncertainty of the author, the political purposes of the inventor, and, above all, of the social and cultural context in which it was written, than a blueprint for a scientific development."
Doron Swade, a specialist on history of computing known for his work on Babbage, discussed Lovelace during a lecture on Babbage's analytical engine. He explained that Ada was only a "promising beginner" instead of genius in mathematics, that she began studying basic concepts of mathematics five years after Babbage conceived the analytical engine so she could not have made important contributions to it, and that she only published the first computer program instead of actually writing it. But he agrees that Ada was the only person to see the potential of the analytical engine as a machine capable of expressing entities other than quantities.
In his self-published book, Idea Makers, Stephen Wolfram defends Lovelace's contributions. While acknowledging that Babbage wrote several unpublished algorithms for the Analytical Engine prior to Lovelace's notes, Wolfram argues that "there's nothing as sophisticated—or as clean—as Ada's computation of the Bernoulli numbers. Babbage certainly helped and commented on Ada's work, but she was definitely the driver of it." Wolfram then suggests that Lovelace's main achievement was to distill from Babbage's correspondence "a clear exposition of the abstract operation of the machine—something which Babbage never did."